Christopher Clark

I am a research scientist with PRIOR team at the non-profit AI research institute the Allen Institute for AI. My general research interests are in unified vision and language systems and out-of-domain generalization. My recent projects have involved training models that can complete many multi-modal tasks with a shared architecture. Previously I have worked on training models to play the drawing and guessing game Iconary, and my PhD focused on ways to prevent models using spurious correlations or non-generalization patterns found in the training data.

I received my PhD from UW where I was advised by Luke Zettlemoyer. Before that I was a Predoctoral Young Investigator at the AI2 and completed a Masters at the University of Edinburgh.

Publications

Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal Models
Matt Deitke*, Christopher Clark*, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Mohammadreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu, Taira Anderson, Erin Bransom, Kiana Ehsani, Huong Ngo, YenSung Chen, Ajay Patel, Mark Yatskar, Chris Callison-Burch, Andrew Head, Rose Hendrix, Favyen Bastani, Eli VanderBilt, Nathan Lambert, Yvonne Chou, Arnavi Chheda, Jenna Sparks, Sam Skjonsberg, Michael Schmitz, Aaron Sarnat, Byron Bischoff, Pete Walsh, Chris Newell, Piper Wolters, Tanmay Gupta, Kuo-Hao Zeng, Jon Borchardt, Dirk Groeneveld, Jen Dumas, Crystal Nam, Sophie Lebrecht, Caitlin Wittlif, Carissa Schoenick, Oscar Michel, Ranjay Krishna, Luca Weihs, Noah A. Smith, Hannaneh Hajishirzi, Ross Girshick, Ali Farhadi, Aniruddha Kembhavi
[paper] [code] [demo] [blog]

Exposing and Addressing Cross-Task Inconsistency in Unified Vision-Language Models
Adyasha Maharana, Amita Kamath, Christopher Clark, Mohit Bansal, Aniruddha Kembhavi
In TMLR 2024
[paper] [code]

Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision, Language, Audio, and Action
Jiasen Lu*, Christopher Clark*, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek Hoiem, Aniruddha Kembhavi
In CVPR 2024
[paper] [code] [project page]

Holodeck: Language Guided Generation of 3D Embodied AI Environments
Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick Haber, Ranjay Krishna, Lingjie Liu, Chris Callison-Burch, Mark Yatskar, Aniruddha Kembhavi, Christopher Clark
In CVPR 2024
[paper] [demo]

I can't believe there's no images! Learning Visual Tasks Using only Language Data
Sophia Gu*, Christopher Clark*, Aniruddha Kembhavi
In ICCV 2023
[paper] [code] [project page]

Unified-IO: A Unified Model for Vision, Language, and Multi-Modal Tasks
Jiasen Lu*, Christopher Clark*, Rowan Zellers, Roozbeh Mottaghi, Aniruddha Kembhavi
In ICLR 2022
[paper] [demo]

A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge
Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, Roozbeh Mottaghi
In ECCV 2022
[paper] [code] [project page]

Webly Supervised Concept Expansion for General Purpose Vision Models
Amita Kamath*, Christopher Clark*, Tanmay Gupta*, Eric Kolve, Derek Hoiem, Aniruddha Kembhavi
In ECCV 2022
[paper] [code] [demo] [project page]

Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text
Christopher Clark, Jordi Salvador, Dustin Schwenk, Derrick Bonafilia, Mark Yatskar, Eric Kolve, Alvaro Herrasti, Jonghyun Choi, Sachin Mehta, Sam Skjonsberg, Carissa Schoenick, Aaron Sarnat, Hannaneh Hajishirzi, Aniruddha Kembhavi, Oren Etzioni, Ali Farhadi
In EMNLP 2021
[paper] [code]

Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles
Christopher Clark, Mark Yatskar, Luke Zettlemoyer
In EMNLP Findings 2020
[paper] [code]

Don’t Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases
Christopher Clark, Mark Yatskar, Luke Zettlemoyer
In EMNLP 2019
[paper] [code]

BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, Kristina Toutanova
In NAACL 2019
[paper] [dataset] [leaderboard]

Simple and Effective Multi-Paragraph Reading Comprehension
Christopher Clark, Matt Gradner
In ACL 2018
[paper] [code] [demo]

Deep Contextualized Word Representations
Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer
In NAACL 2018
[paper] [website]

IKE - An Interactive Tool for Knowledge Extraction
Bhavana Dalvi, Sumithra Bhakthavatsalam, Chris Clark, Peter Clark, Oren Etzioni, Anthony Fader, Dirk Groeneveld
In AKBC at NAACL 2016
[paper] [website] [code]

PDFFigures 2.0: Mining Figures from Research Papers
Christopher Clark, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, Vicente Ordonez.
In JCDL 2016
[paper] [website] [code]

Looking Beyond Text: Extracting Figures, Tables, and Captions from Computer Science Papers
Christopher Clark, Santosh Divvala
In Workshop on Scholarly Big Data at AAAI 2015
[paper] [website] [code]

Training Deep Convolutional Neural Networks to Play Go
Christopher Clark, Amos Storkey
In ICML 2015
[paper] [demo]

Contact

chrisc@allenai.org